Sunday, April 28, 2013
Thursday, March 28, 2013
FFT komutu kullanarak matlabda basit DFT
clear all;
for n =1:20,
sign1(n)=0.5*cos(2*pi*n/10); % transfer edilecek sinyal
end
XK(1:20)=0;
for k =1:20
for n=1:20
XK(k)=XK(k)+sign1(n)*exp(-j*2*pi*n*k/20); %matrisle transfer et
end
end
%using fft command
XK2=fft(sign1,20); %fft komutu kullanarak transfer et
XK2(1)=[];
stem(XK); %cizdir
plot();
stem(XK2) %cizdir
Wednesday, March 27, 2013
Great Windows tools
http://rainmeter.net/cms/Final25
http://www.infoworld.com/d/applications/top-15-free-tools-every-windows-desktop-063?page=0,0
Microsoft synctoy 2.1
http://www.infoworld.com/d/applications/top-15-free-tools-every-windows-desktop-063?page=0,0
Microsoft synctoy 2.1
Tuesday, March 26, 2013
Thursday, March 7, 2013
Simple DFT using FFT command in matlab
clear all;
for n =1:20,
sign1(n)=0.5*cos(2*pi*n/10); %sinal to convert, f=10 Hz
end
XK(1:20)=0;
for k =1:20
for n=1:20
XK(k)=XK(k)+sign1(n)*exp(-j*2*pi*n*k/20); %convert with math
end
end
%using fft command
XK2=fft(sign1,20); %convert with command
XK2(1)=[];
stem(XK);
plot();
stem(XK2)
Saturday, March 2, 2013
Simple Fourier Transform with Matlab - More Accurate
% SimpFourierTransform2
clear Q, f;
f=14;
h = @(x,y) cos(2*pi*x*f).*exp(-2*pi*i*x.*y);
mintime=-10;
maxtime=10;
for f=1:20;
Q(f) = quadgk(@(x)h(x,f),mintime,maxtime);
end
stem(round(abs(Q)));
%stem(abs(Q))
Simple Fourier Transform with Matlab - With Plots
% SimpFourierTransform1
clear Q, f;
f=3;
h = @(x,y) sin(2*pi*x*f).*exp(-2*pi*i*x.*y);
mintime=-1;
maxtime=1;
tim1=linspace(mintime,maxtime,1000);
figure()
subplot(2,1,1), plot(tim1, real(h(tim1,f)));
title('Real Part of Integrated Function')
xlabel('Time (seconds)');
ylabel('Magnitude or real part');
subplot(2,1,2), plot(tim1, imag(h(tim1,f)));
title('Imaginery Part of Integrated Function')
xlabel('Time (seconds)');
ylabel('Magnitude of imaginery part');
for f=1:20;
Q(f) = quad(@(x)h(x,f),mintime,maxtime);
end
figure()
subplot(2,1,1), stem(round(real(Q)));
title('Real Part of the result of the integral')
xlabel('F (1/seconds)');
ylabel('Magnitude or real part');
subplot(2,1,2), stem(round(imag(Q)));
title('Imaginery Part of the result of the integral')
xlabel('F (1/seconds)');
ylabel('Magnitude of imaginery part');
%stem(abs(Q))